An Ideal Approach for Detection of Phishing Attacks using Naïve Bayes Classifier

نویسنده

  • R. Priya
چکیده

Phishing attack is an aberrant trick to peculate user’s private information by duping them to assail via a spurious website planned to mimic and resembles as an authentic website. The user’s confidential information such as username, password, and PIN number will be grabbed by the attacker and creates a fraudulent transactions. The information holder’s credentials as well as money will be seized. The phishing and legitimate website will have high intelligible resemblances by which the attacker will seize the credentials of the user. Inorder to detect the phishing attacks there exists various techniques such as blacklisting, whitelisting, heuristics and machine learning. Nowadays machine learning is used and found to be more effective. The proposed system extracts the source code features, URL features and image features from the phishing website. The features that are extracted are given to the ant colony optimization algorithm to acquire the reduced features. The reduced features are again given to the Naïve Bayes classifier inorder to classify the webpage as genuine or phished.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

Feature Selection for Improved Phishing Detection

Phishing – a hotbed of multibillion dollar underground economy – has become an important cybersecurity problem. The centralized blacklist approach used by most web browsers usually fails to detect zero-day attacks, leaving the ordinary users vulnerable to new phishing schemes; therefore, learning machine based approaches have been implemented for phishing detection. Many existing techniques in ...

متن کامل

TabSecure: An Anti-Phishing Solution with Protection against Tabnabbing

With an upsurge in the use of internet, there are various attacks being launched every day. These attacks target the vulnerabilities of various computer resources, such as, the operating system, web browsers, toolbars, etc. along with the susceptibility of the users due to lack of awareness about the possible scams. The existing solutions suffer various drawbacks. The website phishing solutions...

متن کامل

Feature-based Malicious URL and Attack Type Detection Using Multi-class Classification

Nowadays, malicious URLs are the common threat to the businesses, social networks, net-banking etc. Existing approaches have focused on binary detection i.e. either the URL is malicious or benign. Very few literature is found which focused on the detection of malicious URLs and their attack types. Hence, it becomes necessary to know the attack type and adopt an effective countermeasure. This pa...

متن کامل

System Design, Investigation and Countermeasure of Phishing Attacks using Data Mining Classification Methods and its Analysis

The phishing is a kind of e-commerce lure which is intended to steal the confidential information of the internet user by making identical website of legitimate one in which the contents and images most likely remains similar to the legitimate website. The other way of phishing website is to do minor changes in the URL or in the domain of the website. In this paper, an anti-phishing system is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016